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Abstract. We study a single-machine stochastic scheduling problem with n jobs, in which
each job has a random processing time and a general stochastic cost function which may
include a random due date and weight. The processing times are exponentially distributed,
whereas the stochastic cost functions and the due dates may follow any distributions. The
objective is to minimize the expected sum of the cost functions. We prove that a sequence
in an order based on the product of the rate of processing time with the expected cost func-
tion is optimal, and under certain conditions, a sequence with the weighted shortest expected
processing time first (WSEPT) structure is optimal. We show that this generalizes previous
known results to more general situations. Examples of applications to practical problems are
also discussed.
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1. Introduction

We address the following problem. A number of n jobs are to be processed
on a single-machine, which are all available at time zero. The processing
times pi of job i, i = 1,2, . . . , n, are independent random variables. The
cost functions are stochastic processes which can include various determin-
istic and/or stochastic attributes such as due dates di , weights wi , etc. Let
λ= (i1, . . . , in) be a permutation of the integers {1,2, . . . , n}, referred to as
a sequence, that determines the order to process the jobs, with ik = i if and
only if job i is the kth to be processed. The problem is to find an optimal
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sequence λ∗ that minimizes the following objective function:

ETC(λ)=E

[
n∑

i=1

fi(Ci(λ))

]
(1.1)

over all sequences λ, where for each i ∈{1,2, . . . , n},
{fi(t) : t �0} is a stochastic process independent of p1, . . . , pn,
Ci(λ) is the completion time of job i under a sequence λ, and
E(X) represents the expectation of a random variable X.

In particular, we consider the objective function of the form:

ETC(λ)=E


 ∑

i:Ci(λ)>di

wig(Ci(λ)−di)




=E

[
n∑

i=1

wig(Ci(λ)−di)I{Ci(λ)>di}

]
, (1.2)

where

g(·) is a non-negative and non-decreasing (deterministic) function
defined on [0,∞),

wi , i =1,2, . . . , n, are deterministic weights,
di , i = 1,2, . . . , n, are random due dates independent of the processing

times {pi}, and
IA is the indicator of an event A which takes value 1 if A occurs and 0

otherwise.

Both (1.1) and (1.2) are general objective functions, although (1.2) is a
special case of (1.1). Many stochastic scheduling problems studied previ-
ously in the literature have performance measures covered by (1.2). Some
typical examples are given below:

(a) Expected weighted sum of completion times (let fi(t) = wit , see
Rothkopf, 1966).

(b) Expected weighted sum of squared completion times (let fi(t)=wit
2,

see Bagga and Kalra, 1981).
(c) Expected total weighted tardiness (let fi(t) = witI{t>di}, see Pinedo,

1983).
(d) Expected weighted number of tardy jobs (let fi(t) = wiI{t>di}, see

Pinedo, 1983; Boxma and Forst, 1986).
(e) Weighted lateness probability, that is,

∑n
i=1 wiPr(Ci(λ)>di) (which is

equivalent to the objective function in (d) above; see Sarin et al.,
1991).
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In this paper, we study the problem where processing times p1, . . . , pn fol-
low exponential distributions, i.e., pi has a density function of the form
λie−λix , or equivalently, a cumulative distribution function (cdf) 1 − e−λix ,
i = 1,2, . . . , n. The exponential distribution is often used to model uncer-
tain times, and is justified in the case with a high level of uncertainty (see
Cai and Zhou, 2000). The parameter λi represents the ‘rate’ of pi and is
reciprocal to the mean of pi .

The cost functions fj (·), j = 1,2, . . . , n, in (1.1) are general stochastic
processes, and the due dates dj in (1.2) may follow arbitrary distributions
with cdf Fj , j =1,2, . . . , n. For brevity, denote

• the model in (1.1) as 1 |pj ∼ exp(λj ) |E
[∑

fj (Cj )
]
, and

• the model in (1.2) as 1 |pj ∼exp(λj ), dj ∼Fj |E
[∑

wjg(Cj −dj )I{Cj >dj }
]
.

We only consider the non-preemptive scheduling problems in this paper. In
other words, the machine will process each job continuously until it is com-
pleted, with job preemption in the middle of processing not allowed.

Stochastic scheduling problems with random processing times and/or
random due dates have been topics of research for decades. See, for exam-
ple, Pinedo (2002) and Righter (1994). Among these problems, models
with exponential processing times are commonly addressed in the litera-
ture and, consequently, some very elegant results on their solutions have
been derived. Some relevant works on problems with exponential process-
ing times are briefly reviewed below.

Derman et al. (1978) considered the problem of minimizing the weighted
number of tardy jobs on a single machine. They showed that the weighted
shortest expected processing time (WSEPT) sequence is optimal when all
jobs have a common random due date which follows an arbitrary distribu-
tion.

Glazebrook (1979) examined a parallel-machine problem. He showed
that the shortest expected processing time (SEPT) sequence minimizes the
expected mean flowtime.

Weiss and Pinedo (1980) investigated multiple non-identical machine
problems. They addressed a performance measure that involves a cost rate
g(Ut) at time t � 0, where Ut is the set of uncompleted jobs at the time
t . They showed that several cost functions, including expected sum of
weighted completion times, expected makespan, and expected lifetime of
a series system, are covered by the performance measure and are mini-
mized by a SEPT sequence or a longest expected processing time (LEPT)
sequence.

Pinedo (1983) examined four problems, namely, minimization of the
expected weighted sum of completion times of jobs with random arrival
times on a single machine, minimization of the expected weighted sum
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of job tardinesses on a single machine, minimization of the expected
weighted number of tardy jobs on a single machine, and minimization of
the expected weighted number of tardy jobs on parallel machines. The first
is a preemptive version of the problem, while the rest are non-preemptive.
He showed that WSEPT sequences are optimal under certain (compatabil-
ity) conditions.

A single-machine scheduling problem with the expected weighted number
of tardy jobs as objective function was investigated by Boxma and Forst
(1986). They derived optimal sequences in cases with various due date and
processing time distributions, including exponential due dates, exponential
processing times, independently and identically distributed (i.i.d.) due dates,
i.i.d. processing times, etc.

Kampke (1989) generalized the work of Weiss and Pinedo (1980). Suffi-
cient conditions for optimal priority policies, which may be more general
than the SEPT or the LEPT, were derived.

In Pinedo (2002), the WSEPT sequence has been shown to minimize the
performance measure E

[∑
wih(Ci)

]
, where h(·) is a general function. This

covers objective functions in which all jobs have a common deterministic
due date, such as the expected sum of weighted tardinesses. Moreover, the
performance measure E

[∑
wihi(Ci)

]
is also studied, where hi(·) is a job-

dependent cost function. Pinedo defined an order hj �s hk (termed as hj is
steeper than hk) between the cost functions by dhj (t)�dhk(t) if the differ-
entials exist; or hj (t + δ) − hj (t) � hk(t + δ) − hk(t) otherwise, for all t � 0
and δ > 0. It is shown that if λjwj � λiwi ⇐⇒hj �s hk, then the WSEPT
sequence minimizes E

[∑
wihi(Ci)

]
.

In this paper, we address the problem 1 |pj ∼ exp(λj ) |E
[∑

fj (Cj )
]

with
general stochastic cost functions fi(t), which is non-decreasing in t . In par-
ticular, we consider the problem 1 | pj ∼ exp(λj ), dj ∼ Fj | E

[∑
wjg(Cj −

dj )I{Cj >dj }
]
, where the due dates are random variables and g(·) is a gen-

eral non-decreasing function. This is a general objective function, which
subsumes many performance measures commonly studied in the litera-
ture, as we have shown above. The main result for the problem 1 | pj ∼
exp(λj ) | E

[∑
fj (Cj )

]
is that a sequence in the order based on the incre-

ments of λj E[fj (t)] is optimal. This extends the results of Pinedo (2002)
by dropping the compatibility condition (such as λjwj � λiwi ⇐⇒ hj �s

hk), and by allowing stochastic cost functions. For 1 |pj ∼ exp(λj ), dj ∼Fj |
E

[∑
wjg(Cj −dj )I{Cj >dj }

]
, we will present two results:

(1) When all due dates di have a common distribution, the WSEPT
sequence is optimal without requiring any additional conditions.

(2) Otherwise, if g(·) is convex on [0,∞) with g(0) = 0, then a sequence
in the non-increasing order of {λjwjFj (x)} is optimal. In particular, if
λiwi � λjwj implies that di is stochastically less than or equal to dj
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(the definition of the stochastic order is given after Theorem 3), then
the WSEPT sequence is optimal.

To highlight the generality and applicability of our results, we provide
two practical examples in Section 3. Finally, Section 4 provides some con-
cluding remarks.

2. Main results

We assume, throughout this paper, that each fi(t) has a finite mean func-
tion mi(t)=E[fi(t)] for all t �0 which is non-decreasing in t .

THEOREM 1. For the problem 1 | pj ∼ exp(λj ) | E
[∑

fj (Cj )
]
, if i > j

implies that λimi(t) has increments no more than those of λjmj(t) at any t ,
i.e.,

λi [mi(t)−mi(s)]�λj [mj(t)−mj(s)] ∀t > s, (2.1)

or equivalently,

∫ ∞

0
φ(s)λidmi(s)�

∫ ∞

0
φ(s)λjdmj(s) (2.2)

for any non-negative measurable function φ(s) on [0,∞), where the integrals
are in Lebesgue–Stieltjes sense, then the sequence (1,2, . . . , n) is optimal. In
other words, a sequence in non-increasing order of the increments of {λimi(t)}
is optimal.

Proof. First, by taking φ(s)= I[s,t ] in (2.2) we see that (2.2) implies (2.1).
Conversely, for any non-negative measurable function φ(s), we can con-
struct functions φ1(s) � φ2(s) � · · · , with each φk(s) being a linear combi-
nation of functions of form I[s,t ], such that φk(s)→φ(s) as k →∞.

Hence an application of the monotone convergence theorem shows that
(2.1) implies (2.2). This establishes the equivalence between (2.1) and (2.2).

Next, since {fi(t)} are independent of {pi}, we have, for i, j = 1,2, ..., n

and t �0,

E[fi(t +pj)]=E{E[fi(t +pj)|pj ]}=
∫ ∞

0
E[fi(t +x)|pj =x]λj e−λj xdx

=
∫ ∞

0
E[fi(t +x)]λj e−λj xdx =

∫ ∞

0
mi(t +x)λj e−λj xdx.

(2.3)
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Furthermore, by convolution it can be shown that

the density of pi +pj =
{

λiλj

λj −λi

(
e−λix − e−λj x

)
if λi 	=λj

λ2
i xe−λix if λi =λj .

(2.4)

(Note that the second part of (2.4) is equal to the limit of the first part as
λj converges to λi .) Thus, when λi 	=λj , by (2.4) together with an argument
similar to (2.3) we obtain

E[fi(t +pi +pj)]= λiλj

λj −λi

∫ ∞

0
mi(t +x)

(
e−λix − e−λj x

)
dx. (2.5)

Let λ = {..., i, j, ...} be an arbitrary job sequence, λ′ = {..., j, i, ...} be the
sequence by interchanging two consecutive jobs i, j in λ, and C denote the
completion time of the job prior to job i under λ. Then, for the objective
function ETC in (1.1),

ETC(λ)−ETC(λ′)=E[fi(C +pi)]+E[fj (C +pi +pj)]

−E[fj (C +pj)]−E[fi(C +pi +pj)]. (2.6)

Since p1, . . . , pn are mutually independent, conditional on C = t we have

E[fi(C +pi)|C = t ]=E[fi(t +pi)|C = t ]=E[fi(t +pi)]

and similarly, E[fi(C +pi +pj)|C = t ] = E[fi(t +pi +pj)]. Hence a combi-
nation of (2.6) with (2.3) and (2.5) yields that, conditional on C = t ,

ETC(λ)−ETC(λ′)=E[fi(t +pi)]+E[fj (t +pi +pj)]

−E[fj (t +pj)]−E[fi(t +pi +pj)]

=
∫ ∞

0
mi(t +x)

{
λie−λix − λiλj

λj −λi

(
e−λix − e−λj x

)}
dx

−
∫ ∞

0
mj(t+x)

{
λj e−λj x− λiλj

λj−λi

(
e−λix − e−λj x

)}
dx

=
∫ ∞

0
[λimi(t+x)−λjmj(t+x)]

λj e−λj x −λie−λix

λj −λi

dx

=aij (t), say. (2.7)

Extend the domain of each mi(t) to (−∞,∞) by defining mi(t) = 0 for
t <0. Then mi(·) is a non-decreasing function on (−∞,∞). Hence we can
write mi(t +x)=∫ t+x

−∞ dmi(s), i =1, . . . , n. An application of Fubini’s Theo-
rem then gives
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aij (t)=
∫ ∞

0

∫ t+x

−∞
[λj dmj(s)−λidmi(s)]

λie−λix −λj e−λj x

λj −λi

dx

=
∫ t

−∞

∫ ∞

0

λie−λix −λj e−λj x

λj −λi

dx
[
λj dmj(s)−λidmi(s)

]+

+
∫ ∞

t

∫ ∞

s−t

λie−λix −λj e−λj x

λj −λi

dx
[
λj dmj(s)−λidmi(s)

]
=

∫ ∞

t

e−λi(s−t) − e−λj (s−t)

λj −λi

[
λj dmj(s)−λidmi(s)

]
. (2.8)

It is easy to see that

e−λi(s−t) − e−λj (s−t)

λj −λi

�0 for all s � t.

Hence by (2.7)–(2.8) together with condition (2.2) we have, condition on
C = t ,

i >j �⇒ ETC(λ)−ETC(λ′)=aij (t)�0 ∀t �0,

which in turn implies, unconditionally, ETC(λ)−ETC(λ′)�0.

Thus, we have shown that ETC(λ)�ETC(λ′) for i >j when λi 	=λj . The
same holds when λi =λj as well, which can be similarly proven using the
second part of (2.4), or considering the limit as λj converges to λi . It fol-
lows that the sequence λ′ is better than λ if i > j . In other words, if i > j

while job i is ahead of job j , then the objective function can be reduced
by switching i and j . This means that any sequence other than (1,2, ..., n)

can be improved. Consequently the sequence (1,2, ..., n) is optimal.

Note that condition (2.2) is what we need to prove Theorem 1, while
condition (2.1) is usually easier to check in specific cases. Also, (2.1) does
not require mi(t) to be differentiable at all t � 0. For example, mi(t) may
be discontinuous at some points. Then (2.1) assumes that

λi [mi(t+)−mi(t−)]�λj [mj(t+)−mj(t−)] for i >j

at any discontinuity t (which can also be written as λidmi(t) � λj dmj(t)

in that sense). It is also possible for mi(t) to have different left and right
derivatives at some t . In such a case, (2.1) requires λidmi(t+)�λj dmj(t+)

and λidmi(t−)�λj dmj(t−) for i >j .

Remark 1. Theorem 1 extends the results of Pinedo (2002). Condition
(2.1) or (2.2) is in fact equivalent to ‘λjmj is steeper than λimi ’ in Pinedo’s
terminology. Hence Theorem 1 says that the sequence in a reverse steep-
ness order of {λimi(t), i =1, . . . , n} is optimal. Note that in Pinedo (2002),



324 X. CAI ET AL.

who considers deterministic cost functions fi only, an agreeable condition
is needed between the steepness of fi(t)/wi and the order of λiwi , i.e.,
λiwi � λjwj implies that fi(t)/wi is steeper than fj (t)/wj . In our Theo-
rem 1, such an agreeable condition can be replaced by a weaker condition
(2.1) (or equivalently, (2.2)). In addition, Theorem 1 is more general than
the results of Pinedo (2002), in that it allows stochastic cost functions, so
that the parameters such as due dates, weights, etc., can be random vari-
ables in our theorem instead of being restricted to the deterministic case.

The following example shows an application of Theorem 1.

EXAMPLE 1. Let fi(t) = wih(t), where wi is a deterministic weight and
h(t) is a non-decreasing stochastic process. Then mi(t)=E[fi(t)]=wiE[h(t)]
is non-decreasing in t . Furthermore, if λiwi >λjwj , then

λi [mi(t)−mi(s)]=λiwi{E[h(t)]−E[h(s)]}
�λjwj {E[h(t)]−E[h(s)]}=λj [mj(t)−mj(s)] ∀t > s.

Hence by Theorem 1, a sequence in non-increasing order of {λiwi} min-
imizes E[

∑
wih(Ci)]. As E[pi ] = 1/λi , this sequence is the WSEPT and

so the result generalizes that of Pinedo (2002) to an arbitrary stochastic
instead of a deterministic cost function h. In particular, the h(t) in here
allows a random common due date with an arbitrary distribution.

There are, of course, also examples where the condition does not hold.
A simple one is given below.

EXAMPLE 2. Let f1(t) = 2t and f2(t) = t2, which are deterministic cost
functions. Then m1(t) = 2t and m2(t) = t2. Hence dm1(t) = 2dt and
dm2(t) = 2tdt . It follows that λ1dm1(t) � λ2dm2(t) when t � λ1/λ2, and
λ1dm1(t) > λ2dm2(t) for t < λ1/λ2. Thus (2.1) cannot hold for jobs 1
and 2. Furthermore, suppose w1 =w2. Then it is not difficult to show that
ETC(1,2)<ETC(2,1) if and only if λ1 >λ2

2. Hence the WSEPT rule is not
optimal even if the jobs have a common weight.

The applications of Theorem 1 lead to the next two theorems for the
problem 1 |pj ∼ exp(λj ), dj ∼Fj |E

[∑
wjg(Cj −dj )I{Cj >dj }

]
. We first give a

result with identically distributed due dates.

THEOREM 2. If di have a common distribution, then a sequence in
non-increasing order of {λiwi}, or equivalently, in non-decreasing order of
{E(pi)/wi}, minimizes the ETC(λ) in (1.2).

Proof. Let fi(t)=wig(t −di)I{t>di}, i = 1,2, . . . , n, and F(x) be the com-
mon distribution function of di . Then
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mi(t)=E[fi(t)]=wiE[g(t −di)I{t>di}]=wi

∫
0�x<t

g(t −x) dF(x). (2.9)

Let

g̃(t)=
∫

0�x<t

g(t −x)dF(x)

so that λimi(t) = λiwig̃(t). Since g(t) is non-negative and non-decreasing,
so is g̃(t). It follows that λiwi �λjwj implies

λi [mi(b)−mi(a)]=λiwi [g̃(b)− g̃(a)]�λjwj [g̃(b)− g̃(a)]

=λj [mj(b)−mj(a)]

for all a <b. Thus if λ1w1 � · · ·�λnwn, then {1, ..., n} is optimal by Theo-
rem 1, in other words, a sequence in non-increasing order of {λiwi} mini-
mizes ETC(λ).

EXAMPLE 3.
(i) Let g(x)≡ 1. Then Theorem 2 says that a sequence in non-increasing

order of {λiwi} minimizes the expected weighted number of tardy jobs,
or equivalently, the weighted lateness probability, when the due dates
have a common distribution (not necessarily a common due date).

(ii) Let g(x)=x. Then by Theorem 2, a sequence in non-increasing order
of {λiwi} minimizes the expected weighted sum of job tardinesses.

Note that the above results do not require any compatibility conditions
between the weights and processing times.

The next theorem allows the due dates to have different distributions.

THEOREM 3. If g(·) is convex with g(0)=0, and if

λ1w1F1(x)�λ2w2F2(x)� · · ·�λnwnFn(x) for x �0, (2.10)

then the sequence (1,2, ..., n) minimizes the ETC(λ) in (1.2). In other words,
a sequence in the non-increasing order of {λjwjFj (x)} is optimal.

Notice that, if (2.10) holds, the sequence in the non-increasing order of
{λjwjFj (x)} exactly corresponds to the WSEPT sequence. The proof for
Theorem 3 is given below.

Proof. Since g(x) is non-decreasing with g(0) = 0, we have g(t − x) =∫ t−x

0 dg(y). By Fubini’s Theorem, and recall that Fi(x) is the distribution
function of di , we obtain
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mi(t)=wiE[g(t −di)I{t>di}]=wi

∫
0�x<t

g(t −x)dFi(x)

=wi

∫
0�x<t

∫ t−x

0
dg(y)dFi(x)=wi

∫
0�y<t

∫
0�x�t−y

dFi(x)dg(y)

=wi

∫
0�y<t

Fi(t −y)dg(y)=wi

∫ t

0
Fi(x)dgt(x),

where gt(x)=−g(t −x), which is a non-decreasing function on [0, t ] for any
t �0. Hence

λi [mi(b)−mi(a)]=λiwi

{∫ b

0
Fi(x)dgb(x)−

∫ a

0
Fi(x)dga(x)

}

=
∫ b

a

λiwiFi(x)dgb(x)dx +

+
∫ a

0
λiwiFi(x)[dgb(x)−dga(x)]. (2.11)

Because g(t) is convex, its increment g(t +�)−g(t) is non-decreasing in t

for �>0, which implies

gb(y)−gb(x)=g(b−x)−g(b−y)=g(b−y +�)−g(b−y)

�g(a −y +�)−g(a −y)=g(a −x)−g(a −y)

=ga(y)−ga(x)

for 0 � x < y � a < b, where � = y − x. Thus, for a < b, gb has increments
greater than or equal to those of ga. As a result,∫ a

0
φ(x)dga(x)�

∫ a

0
φ(x)dgb(x), or

∫ a

0
φ(x)[dgb(x)−dga(x)]�0,

for any non-negative measurable function φ(x) on [0, a]. Consequently, if
λiwiFi(x)�λjwjFj (x) for x �0, then∫ a

0
λiwiFi(x) [dgb(x)−dga(x)]�

∫ a

0
λjwjFj (x)[dgb(x)−dga(x)].

(2.12)

Moreover, as gb(x) is non-decreasing on [0, t ],∫ b

a

λiwiFi(x) dgb(x)�
∫ b

a

λjwjFj (x) dgb(x). (2.13)

Now, if i >j , then λiwiFi(x)�λjwjFj (x) for x �0 by the condition of the
theorem. It then follows from (2.11)–(2.13) that
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λi [mi(b)−mi(a)]�λj [mj(b)−mj(a)] ∀a <b, i >j.

Thus by Theorem 1, the sequence (1,2, . . . , n) minimizes the ETC(λ) in
(1.2).

Finally, if λiwiFi(x) � λjwjFj (x) for x � 0, then λiwi � λjwj as x →
∞. Consequently, given the existence of an order between {λjwjFj (x)}, a
sequence in the non-increasing order of {λjwj }, i.e., the WSEPT, is opti-
mal.

In order to state a corollary of Theorem 3, we first give the definition
for the ‘stochastic order’ as follows.

DEFINITION. For two random variables X and Y , we say that ‘X is sto-
chastically less than or equal to Y ’, and write X �st Y if Pr(X >a)�Pr(Y >

a) for all real values a.

COROLLARY TO THEOREM 3 Let g(·) satisfy the conditions in Theo-
rem 3. If λiwi � λjwj implies di �st dj , then a sequence in non-increasing
order of {λjwj } is optimal.

Proof. By the condition of the corollary and the definition for the sto-
chastic order, we have that λiwi � λjwj implies Fi(x) � Fj(x) for all x �
0. As a result, a non-increasing order exists between {λjwjFj (x)} and is
equivalent to the non-increasing order of {λjwj }, so the corollary follows
immediately from Theorem 3.

EXAMPLE 4. Both g(x)=x and g(x)=x2 satisfies the conditions of The-
orem 3. Hence if the compatibility condition in the corollary to The-
orem 3 holds, then a sequence in non-increasing order of {λiwi}, or
equivalently, in non-decreasing stochastic order of {di}, minimizes both
the expected weighted sum of tardinesses E[

∑
i:Ci>di

wi(Ci − di)] and the
expected weighted sum of squared tardinesses E[

∑
i:Ci>di

wi(Ci −di)
2]. (This

is not true for the expected weighted number of tardy jobs. Note that
g(x)=1 does not satisfy the conditions of Theorem 3 because g(0) 	=0.)

Remark 2. The assumption that the weights wi are deterministic in The-
orems 2 and 3 can be relaxed. If wi are random variables independent of
{pi} and {fi(t)}, then the two theorems still hold with wi being replaced by
E[wi ] in the results.

Condition (2.10) is weaker than the agreeable condition between {λjwj }
and {di}. If for some i 	= j , λiwi > λjwj but di �st dj fails, a sequence in
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non-increasing order of {λjwj } could still be optimal. We illustrate this in
the following example:

EXAMPLE 5. Suppose di ∼ exp(δi) so that Fi(x) = 1 − e−δix . We show
below that an order exists between {λjwjFj (x)} if and only if {λjwj } have
the same order as {λjwjδj }. To see this, let λiwi � λjwj and λiwiδi �
λjwjδj . We show that λiwiFi(x)�λjwjFj (x) for x >0 below. Consider the
following two cases:

Case 1: δi <δj . It is easy to see that (1− e−x)/x is a decreasing function
of x on (0,∞). Hence δi <δj and λiwiδi �λjwjδj imply, for x >0,

Fi(x)

Fj (x)
= 1− e−δix

1− e−δj x
>

δix

δjx
= δi

δj

� λjwj

λiwi

,

or equivalently, λiwiFi(x)>λjwjFj (x).

Case 2: δi � δj . Then Fi(x)�Fj(x) for x �0, which together with λiwi �
λjwj leads immediately to λiwiFi(x)�λjwjFj (x).

Conversely, if λiwiFi(x)�λjwjFj (x) for x �0, then letting x →∞ yields
λiwi �λjwj . Furthermore,

1� λiwiFi(x)

λjwjFj (x)
= λiwi(1− e−δix)

λjwj (1− e−δj x)
−→ λiwiδi

λjwjδj

as x ↓0.

Hence λiwiδi �λjwjδj .
Thus, we have shown that λiwiFi(x) � λjwjFj (x) for x � 0 if and only

if λiwi � λjwj and λiwiδi � λjwjδj . As a results, even if λiwi > λjwj but
δi <δj (so that di �st dj fails), a sequence in non-increasing order of {λjwj }
would still be optimal if we have λiwiδi �λjwjδj for such i and j .

3. Examples of applications

To highlight the generality and applicability of our results, we provide two
examples below. The first example takes into account random price varia-
tions and interest accrual of capitals, while the second one allows a dead-
line in addition to the due dates.

EXAMPLE 6. A company produces a variety of goods for sale. While
the current price of a product is known, the future price is uncertain
and expected to decline over time due to fading popularity and advance-
ment of technology. This applies particularly to fashion products (e.g., toys,
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clothes), entertainment products (e.g., music, video), and technology prod-
ucts (e.g., computers, softwares). To allow random variations in the future
price, we model the price of job i at time t by aihi(t), where ai is a con-
stant representing the current price and hi(t) is a stochastic process with
hi(0) = 1. Assume that E[hi(t)] = u(t) is a non-increasing function of t ,
reflecting a downward trend of price over time.

At the start of production, an amount of capital is invested to produce
job i, which is proportional to the current price, namely βai , where 0<β <

1. Let α denote the interest rate, which is a random variable following an
arbitrary distribution. Then the value of the investment for job i at time t

is given by βai(1 +α)t . Hence if job i is sold at time t , then its net profit
is aihi(t)−βai(1+α)t . Suppose that each job is sold to a retailer upon its
completion, then the total net profit from a set of n jobs is

n∑
i=1

[
aihi(Ci)−βai(1+α)Ci

]
, (3.1)

where Ci is the completion time of job i.
If the company produces the goods in sequel, then the problem faced by

the management is how to schedule the production optimally so as to max-
imize the expected total net profit. Define stochastic processes

fi(t)=βai(1+α)t −aihi(t), i =1, . . . , n. (3.2)

Then the problem of maximizing the total net profit given by (3.1) is equiv-
alent to minimizing E[

∑n
i=1 fi(Ci)]. From (3.2) we can see that the mean

function of fi(t) is

mi(t)=E[fi(t)]=βaiE[(1+α)t ]−aiE[hi(t)]+ai(1−β)

=ai{βE[(1+α)t ]−u(t)}. (3.3)

As E[hi(t)] = u(t) is a non-increasing function of t , by (3.3) mi(t) is non-
decreasing in t . Write G(t) = βE[(1 + α)t ] − u(t) for brevity, which is non-
decreasing in t . Then, assuming that the processing times are exponentially
distributed with parameters λ1, . . . , λn, it follows from (3.3) that λiai �λjaj

implies

λi [mi(t)−mi(s)]=λiai [G(t)−G(s)]�λjaj [G(t)−G(s)]

=λj [mj(t)−mj(s)]

for all t > s. Thus by Theorem 1, a sequence in non-increasing order
of {λjaj } minimizes E[

∑n
i=1 fi(Ci)], and so is optimal to maximize the

expected total net profit.
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It is interesting to note in this example that the optimal sequence can be
constructed based on the current available price and the rates of the pro-
cessing times, regardless of future price fluctuations and the cost of interest
on the capital.

EXAMPLE 7. A laboratory is contracted to perform reliability tests on n

items. The test is to be performed sequentially on a particular facility, with
each item tested immediately after the failure of the last item. The failure
times of the items are supposed to be independently and exponentially dis-
tributed with failure rates λ1, . . . , λn, respectively. If the test result for item
i is reported on or before a due date di , the laboratory will receive a pay-
ment valued vi for the test. If it is later than di by time t , then the payment
will be reduced proportionally to vih(t), where h(t) is a stochastic process
taking values in [0,1] and is decreasing in t almost surely. The due dates
are assumed to be random variables with a common distribution. In addi-
tion, if the facility to perform the tests breaks down, then the tests will
not be able to continue and so no payment will be made for items not yet
tested by the breakdown time. The breakdown time B is assumed to be
exponentially distributed with a rate δ.

The laboratory wishes to schedule the tests optimally so as to maximize
the expected total payment it can receive. This is equivalent to minimizing
the following objective function (representing the expected total loss):

ETL(λ)=E

[
n∑

i=1

{
vih̃(Ci −di)I{di<Ci�B} +viI{Ci>B}

}]
, (3.4)

where h̃(t)=1−h(t) and Ci is the completion time of testing item i. Let

fi(t)=vih̃(t −di)I{di<t�B} +viI{t>B}.

Then the objective function in (3.4) is equal to ETL(λ)= E
[∑n

i=1 fi(Ci)
]
.

As h(t) is decreasing in t almost surely and 0 �h(t)� 1, {fi(t), t � 0} is a
non-decreasing stochastic process for each i. Let d denote a random vari-
able with the same distribution as di . Then the mean function of fi(t) is

mi(t)=E[fi(t)]=viE[h̃(t −d)I{d<t�B}]+viP (t >B),

=viE[h̃(t −d)e−δt I{t>d} +vi(1− e−δt ),

=vi

{
e−δt

(
E[h̃(t −a)I{t>a}]−1

)
+1

}
=viG(t),

where

G(t)=1− e−δt
(

1−E[h̃(t −d)I{t>d}]
)

.
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Since 0 � E[h̃(t − d)I{t>d}] � 1 and by the assumptions of the problem
E[h̃(t − d)I{t>d}] is non-decreasing in t , e−δt

(
1−E[h̃(t −d)I{t>d}]

)
is non-

increasing in t and so G(t) is non-decreasing in t . Hence, similar to the
arguments in Example 6, it follows from Theorem 1 that a sequence in
non-increasing order of {λjvj } is optimal. That is, items with higher ratios
of value over mean testing time should be tested earlier.

4. Concluding remarks

The paper generalizes previous studies on stochastic single-machine sched-
uling to more general situations. The model 1 | pj ∼ exp(λj ) | E

[∑
fj (Cj )

]
with general stochastic cost functions fi(t) has been examined. This is
a general model, which subsumes many performance measures commonly
studied in the literature. We have also illustrated the possible applications
of the results with two examples; one addresses the situation where the
prices for the products of a company fluctuate randomly and the other is
a problem in laboratory testing operations which are subject to not only
random due dates, but also an additional random deadline related to the
breakdown of the testing facility. These examples show that the models
considered here can address some interesting aspects of decision making in
practical environments.

We have found that a sequence in the order based on the increments
of λj E[fj (t)] is optimal for 1 | pj ∼ exp(λj ) | E

[∑
fj (Cj )

]
. This extends

the results of Pinedo (2002) by dropping the compatibility condition (such
as λjwj � λkwk ⇐⇒ hj �s hk), and by allowing stochastic cost functions.
We have also obtained new results on the optimal solutions for 1 | pj ∼
exp(λj ), dj ∼Fj |E

[∑
wjg(Cj −dj )I{Cj >dj }

]
.

Interesting future research work may include the search of optimal solu-
tions when the job processing times follow more general distributions than
the exponential, jobs have different arrival times, and/or the weights are
stochastic functions of time. Other important topics include the preemp-
tive version of the problem, stochastic machine breakdowns, as well as the
extension of the models to multiple machine scheduling.
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